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Chapter 5
Joint Probability Distributions

 Example:

 The continuous random variable X can denote the length of one dimension of an
injection-molded part, and the continuous random variable Y might denote the length of
another dimension. We might be interested in probabilities that can be expressed in terms
of both X and Y.

 It is often useful to have more than one random variable defined in a random
experiment.

 In general, if X and Y are two random variables, the probability distribution that defines
their simultaneous behavior is called a joint probability distribution.



5-1 TWO DISCRETE RANDOM VARIABLES:

5-1.1 Joint Probability Distributions

 Example:

Calls are made to check the airline schedule at your departure city.
In the first four bits transmitted:

X: # of bars of signal strength on your cell phone
Y: # of times you need to state your departure city.

We define the range of the random variables (X,Y) to be the sets of points (x,y) in two
dimensional space for which the probability that X=x and Y=y is positive.



x = # of bars of signal strength

y = # of times city name 
is stated

1 2 3

4 0.15 0.1 0.05

3 0.02 0.1 0.05

2 0.02 0.03 0.2

1 0.01 0.02 0.25

 Two random variables joint distribution bivariate probability distribution

 The distribution can be described through a joint probability mass function.

Also, P(X = x and Y = y) is usually written as P(X = x, Y = y).



 Joint Probability Mass Function:

5-1.2 Marginal Probability Distributions

 The individual probability distribution of a random variable is referred to as its
marginal probability distribution.

 In general, the marginal probability distribution of X can be determined from the joint
probability distribution of X and other random variables.

 For P(X = x), we sum P(X = x, Y = y) over all points in the range of (X,Y) for which
X = x.



 Example:

x = # of bars of signal strength

y = # of times city name is 
stated

1 2 3 Marginal probability 
distribution of Y

4 0.15 0.1 0.05 0.3 

3 0.02 0.1 0.05 0.17

2 0.02 0.03 0.2 0.25

1 0.01 0.02 0.25 0.28

0.2 0.25 0.55

Marginal probability distribution of X



Marginal Probability Mass Function:

E(X) = 1(0.2) + 2(0.25) + 3(0.55) = 2.35

 Same for E(Y), V(X) and V(Y).



5-1.3 Conditional Probability Distributions

When two random variables are defined in a random experiment, knowledge of one 
can change the probabilities that we associate with the values of the other.

We can write such conditional probabilities as P(Y = 1|X = 3) and P(Y=1|X=1). 

 X and Y are expected to be dependent.

 Example:

For the same example,

P(Y=1|X=3) P(X=3,Y=1)/P(X=3) = fxy(3,1)/fx(3) = 0.25/0.55 = 0.454

The set of probabilities defines the conditional probability distribution of Y given that X=3



 Conditional Probability Mass Function:



 Example:

For the same example,

Conditional probability distributions of Y given X = x,

x = # of bars of signal strength

y = # of times city name 
is stated

1 2 3

4 0.75 0.4 0.091

3 0.1 0.4 0.091

2 0.1 0.12 0.364

1 0.05 0.08 0.454



 Conditional Mean and Variance:

Properties of random variables can be extended to a conditional probability distribution
of Y given X = x. The usual formulas for mean and variance can be applied to a
conditional probability mass function.



 Example:

For the same example,

The conditional mean of Y given X = 1, is

E(Y|1) = 1(0.05) + 2(0.1) + 3(0.1) + 4(0.75) = 3.55

The conditional variance of Y given X = 1, is

V(Y|1) = (1-3.55)20.05 + (2-3.55)20.1 + (3-3.55)20.1 + (4-3.55)20.75 = 0.748

5-1.4 Independence

 In some random experiments, knowledge of the values of X does not change any of the
probabilities associated with the values for Y.

 Example:

In a plastic molding operation, each part is classified as to whether it conforms to color and
length specifications.



Joint and marginal probability
distributions of X and Y

Conditional probability distributions
of Y given X=x

 Notice the effect of conditions…



 By analogy with independent events, we define two random variables to be
independent whenever

For all x and y.



 Question 5-3.

Show that the following function satisfies the properties of a joint probability mass function

Yes it is







5-2 TWO CONTINUOUS RANDOM VARIABLES:

5-2.1 Joint Probability Distributions

 Example:

let the continuous random variable X denote the length of one dimension of an injection-
molded part, and let the continuous random variable Y denote the length of another
dimension.

We can study each random variable separately.

However, because the two random variables are measurements from the same part, small
disturbances in the injection-molding process, such as pressure and temperature variations,
might be more likely to generate values for X and Y in specific regions of two-dimensional
space.

Knowledge of the joint probability distribution of X and Y provides information that is not 
obvious from the marginal probability distributions.



 The joint probability distribution of two continuous random variables X and Y can be
specified by providing a method for calculating the probability that X and Y assume a
value in any region R of two-dimensional space.

A joint probability density function can be 
defined over two-dimensional space.

 The probability That (X,Y) assumes a value in the region R equals the volume of the
shaded region



 Joint Probability Density Function:



 Example:

Each length might be modeled by a normal distribution. However, because the
measurements are from the same part, the random variables are typically not independent.

If the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respectively,
we might be interested in the probability that a part satisfies both specifications; that is,



 Example:

Let the random variable X denote the time until a computer server connects to your
machine (in milliseconds), and let Y denote the time until the server authorizes you as a
valid user (in milliseconds).

The region with nonzero probability is shaded as follows.



The property that this joint probability density function integrates to 1 can be verified as 
follows:





5-2.2 Marginal Probability Distributions

Marginal Probability Density Function:

A probability involving only one random variable, can be found from the marginal
probability distribution of X or from the joint probability distribution of X and Y.



 Example:

For the last example, calculate the probability that Y exceeds 2000 milliseconds.



Alternatively, the probability can be calculated from the marginal probability distribution 
of Y as follows.



5-2.3 Conditional Probability Distributions



 Example:

Determine the conditional probability density function for Y given that X=x.



 Conditional Mean and Variance:



 Example:

Determine the conditional mean for Y given that x = 1500.



5-2.4 Independence

 The definition of independence for continuous random variables is similar to the
definition for discrete random variables.



 Example:

Suppose that,

Then,

Since the multiplication of marginal probability functions of X and Y is equal to the
original joint probability density function, then X and Y are INDEPENDENT..



 Question 5-18.

Determine the value or ( c ) that makes f(x,y) = c (x+y) a joint probability density function 
over the range 0 < x < 3 and x < y < x+2. 



















5-3 COVARIANCE AND CORRELATION:

A common measure of the relationship between two random variables is the
covariance.

 To define the covariance, we need to describe the expected value of a function of two
random variables h(X, Y ).

 Expected Value of a Function of Two Random Variables:



 Example:

For the following joint probability distribution, Calculate E[(X-µX)(Y-µY)].



The covariance between X
and Y describes the
variation between the two
random variables.

Covariance is a measure of
linear relationship between
the random variables. If the
relationship between the
random variables is nonlinear,
the covariance might not be
sensitive to the relationship.

Covariance



Correlation

 It is another measure of the relationship between two random variables that is often
easier to interpret than the covariance.

 The correlation just scales the covariance by the standard deviation of each variable.



 The correlation is a dimensionless quantity that can be used to compare the linear
relationships between pairs of variables in different units.

 If the points in the joint probability distribution of X and Y that receive positive
probability tend to fall along a line of positive (or negative) slope, the correlation is near
+1 (or -1).

 If it is equal to +1 or -1 , it can be shown that the points in the joint probability
distribution that receive positive probability fall exactly along a straight line.

 Two random variables with nonzero correlation are said to be correlated. Similar to
covariance, the correlation is a measure of the linear relationship between random
variables.



 Example:



 For independent random variables, we do not expect any relationship in their joint
probability distribution.

 Example:





It can be shown that these two random variables are independent.

 However, if the correlation between two random variables is zero, we cannot
immediately conclude that the random variables are independent.

 Question 5-35.

Determine the value or ( c ) and the covariance and correlation for the joint probability mass 
function f(x,y) = c (x+y) for x = 1,2,3 and y = 1,2,3.



5-5 LINEAR FUNCTIONS OF RANDOM VARIABLES:

A random variable is sometimes defined as a function of one or more random variables.

 Example:

If the random variables X1 and X2 denote the length and width, respectively, of a
manufactured part, Y = 2X1 + 2X2 is a random variable that represents the perimeter of the
part.

 In this section, we develop results for random variables that are linear combinations of
random variables.

Linear Combination:



Mean of a Linear Function:

 Variance of a Linear Function:



 This requires the random variables to be independent.

 Example:

A semiconductor product consists of three layers. If the variances in thickness of the first, 
second, and third layers are 25, 40, and 30 nanometers squared, what is the variance of the 
thickness of the final product?

X = X1 + X2 + X3

So that 

V(X) = V(X1) + V(X2) + V(X3) = 25+40+30 = 95 nanometers squared.

S.D. = 9.75 nm



Mean and Variance of an Average:

 Reproductive Property of the Normal Distribution:



 Example:

Let the random variables X1 and X2 denote the length and width, respectively, of a
manufactured part. Assume that X1 is normal with E(X1) = 2 centimeters and standard
deviation 0.1 centimeter and that X2 is normal with E(X2) = 5 centimeters and standard
deviation 0.2 centimeter. Also, assume that X1 and X2 are independent. Determine the
probability that the perimeter exceeds 14.5 centimeters.

The Perimeter Y = 2X1 + 2X2

E(Y) = 2*2 + 2*5 = 14 cm

V(Y) = 4*0.12 + 4*0.22 = 0.2

so that



 Question 5-64.

Assume that the weights of individuals are independent and normally distributed with mean 
of 160 pounds and a standard deviation of 30 pounds. Suppose that 25 people squeeze into 
an elevator that is designed to hold 43000 pounds.

A- what is the probability that the load (total weight) exceeds the design limit?

B- what design limit is exceeded by 25 occupants with probability 0.0001??
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Chapter 5

Joint Probability Distributions

		 Example: 





		 The continuous random variable X can denote the length of one dimension of an injection-molded part, and the continuous random variable Y might denote the length of another dimension. We might be interested in probabilities that can be expressed in terms of both X and Y.



		 It is often useful to have more than one random variable defined in a random experiment.



		 In general, if X and Y are two random variables, the probability distribution that defines their simultaneous behavior is called a joint probability distribution.









5-1 TWO DISCRETE RANDOM VARIABLES:



5-1.1 Joint Probability Distributions

		 Example: 





Calls are made to check the airline schedule at your departure city.

In the first four bits transmitted:



X: # of bars of signal strength on your cell phone

Y: # of times you need to state your departure city.



We define the range of the random variables (X,Y) to be the sets of points (x,y) in two dimensional space for which the probability that X=x and Y=y is positive.









		 Two random variables joint distribution 	            bivariate probability distribution





		 The distribution can be described through a joint probability mass function.



		 Also, P(X = x and Y = y) is usually written as P(X = x, Y = y).





		x = # of bars of signal strength

		y = # of times city name is stated		1		2		3

		4		0.15		0.1		0.05

		3		0.02		0.1		0.05

		2		0.02		0.03		0.2

		1		0.01		0.02		0.25

































		 Joint Probability Mass Function:



5-1.2 Marginal Probability Distributions

		 The individual probability distribution of a random variable is referred to as its marginal probability distribution.



		 In general, the marginal probability distribution of X can be determined from the joint probability distribution of X and other random variables.



		 For P(X = x), we sum P(X = x, Y = y) over all points in the range of (X,Y) for which  X = x.









		 Example: 







		x = # of bars of signal strength

		y = # of times city name is stated		1		2		3		Marginal probability distribution of Y

		4		0.15		0.1		0.05		0.3 

		3		0.02		0.1		0.05		0.17

		2		0.02		0.03		0.2		0.25

		1		0.01		0.02		0.25		0.28

		0.2		0.25		0.55

		Marginal probability distribution of X







































		 Marginal Probability Mass Function:



E(X) = 1(0.2) + 2(0.25) + 3(0.55) = 2.35



		 Same for E(Y), V(X) and V(Y). 









5-1.3 Conditional Probability Distributions

		 When two random variables are defined in a random experiment, knowledge of one can change the probabilities that we associate with the values of the other.



		 We can write such conditional probabilities as P(Y = 1|X = 3) and P(Y=1|X=1). 



		 X and Y are expected to be dependent.



		 Example: 





For the same example,



P(Y=1|X=3) P(X=3,Y=1)/P(X=3) = fxy(3,1)/fx(3) = 0.25/0.55 = 0.454



		The set of probabilities defines the conditional probability distribution of Y given that X=3









		 Conditional Probability Mass Function:









		 Example: 





For the same example,



Conditional probability distributions of Y given X = x, 

		x = # of bars of signal strength

		y = # of times city name is stated		1		2		3

		4		0.75		0.4		0.091

		3		0.1		0.4		0.091

		2		0.1		0.12		0.364

		1		0.05		0.08		0.454

































		 Conditional Mean and Variance:



Properties of random variables can be extended to a conditional probability distribution of Y given X = x. The usual formulas for mean and variance can be applied to a conditional probability mass function.







		 Example: 





For the same example,



The conditional mean of Y given X = 1, is



E(Y|1) = 1(0.05) + 2(0.1) + 3(0.1) + 4(0.75) = 3.55



The conditional variance of Y given X = 1, is



V(Y|1) = (1-3.55)20.05 + (2-3.55)20.1 + (3-3.55)20.1 + (4-3.55)20.75 = 0.748

5-1.4 Independence

		 In some random experiments, knowledge of the values of X does not change any of the probabilities associated with the values for Y.



		 Example: 





In a plastic molding operation, each part is classified as to whether it conforms to color and length specifications.







Joint and marginal probability distributions of X and Y

Conditional probability distributions of Y  given X=x

		 Notice the effect of conditions…









		 By analogy with independent events, we define two random variables to be independent whenever









For all x and y.







		 Question 5-3.





Show that the following function satisfies the properties of a joint probability mass function

















						Yes it is









*





















5-2 TWO CONTINUOUS RANDOM VARIABLES:



5-2.1 Joint Probability Distributions

		 Example: 





let the continuous random variable X denote the length of one dimension of an injection-molded part, and let the continuous random variable Y denote the length of another dimension.



We can study each random variable separately.



However, because the two random variables are measurements from the same part, small disturbances in the injection-molding process, such as pressure and  temperature variations, might be more likely to generate values for X and Y in specific regions of two-dimensional space.



Knowledge of the joint probability distribution of X and Y provides information that is not obvious from the marginal probability distributions.







		 The joint probability distribution of two continuous random variables X and Y can be specified by providing a method for calculating the probability that X and Y assume a value in any region R of two-dimensional space.



A joint probability density function can be defined over two-dimensional space.



		 The probability That (X,Y) assumes a value in the region R equals the volume of the shaded region









		 Joint Probability Density Function:









		 Example: 





Each length might be modeled by a normal distribution. However, because the measurements are from the same part, the random variables are typically not independent.



If the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respectively, we might be interested in the probability that a part satisfies both specifications; that is,







		 Example: 





Let the random variable X denote the time until a computer server connects to your machine (in milliseconds), and let Y denote the time until the server authorizes you as a valid user (in milliseconds).









The region with nonzero probability is shaded as follows.







The property that this joint probability density function integrates to 1 can be verified as follows:













5-2.2 Marginal Probability Distributions

		 Marginal Probability Density Function:



		 A probability involving only one random variable, can be found from the marginal probability distribution of X or from the joint probability distribution of X and Y.









		 Example: 





For the last example, calculate the probability that Y exceeds 2000 milliseconds.







Alternatively, the probability can be calculated from the marginal probability distribution of Y as follows.







5-2.3 Conditional Probability Distributions







		 Example: 





Determine the conditional probability density function for Y given that X=x.







		 Conditional Mean and Variance:









		 Example: 





Determine the conditional mean for Y given that x = 1500.







5-2.4 Independence

		 The definition of independence for continuous random variables is similar to the definition for discrete random variables.









		 Example: 





Suppose that,







Then, 























Since the multiplication of marginal probability functions of X and Y is equal to the original joint probability density function, then X and Y are INDEPENDENT.. 







		 Question 5-18.





Determine the value or ( c ) that makes f(x,y) = c (x+y) a joint probability density function over the range 0 < x < 3 and x < y < x+2. 

























































5-3 COVARIANCE AND CORRELATION:

		 A common measure of the relationship between two random variables is the covariance.



		 To define the covariance, we need to describe the expected value of a function of two random variables h(X, Y ).



		 Expected Value of a Function of Two Random Variables:









		 Example: 





For the following joint probability distribution, Calculate E[(X-µX)(Y-µY)].







The covariance between X and Y describes the variation between the two random variables.

Covariance is a measure of linear relationship between the random variables. If the relationship between the random variables is nonlinear, the covariance might not be sensitive to the relationship.

		Covariance









		Correlation



		 It is another measure of the relationship between two random variables that is often easier to interpret than the covariance.



		 The correlation just scales the covariance by the standard deviation of each variable.









		 The correlation is a dimensionless quantity that can be used to compare the linear relationships between pairs of variables in different units.



		 If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, the correlation is near +1 (or -1).



		 If it is equal to +1 or -1 , it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight line.



		 Two random variables with nonzero correlation are said to be correlated. Similar to covariance, the correlation is a measure of the linear relationship between random variables.









		 Example: 









		 For independent random variables, we do not expect any relationship in their joint probability distribution.



		 Example: 















It can be shown that these two random variables are independent.



		 However, if the correlation between two random variables is zero, we cannot immediately conclude that the random variables are independent. 



		 Question 5-35.





Determine the value or ( c ) and the covariance and correlation for the joint probability mass function f(x,y) = c (x+y) for x = 1,2,3 and y = 1,2,3.









5-5 LINEAR FUNCTIONS OF RANDOM VARIABLES:

		 A random variable is sometimes defined as a function of one or more random variables.



		 Example: 



If the random variables X1 and X2 denote the length and width, respectively, of a manufactured part, Y = 2X1 + 2X2 is a random variable that represents the perimeter of the part.



		 In this section, we develop results for random variables that are linear combinations of random variables.



		Linear Combination:









		 Mean of a Linear Function:



		 Variance of a Linear Function:









		 This requires the random variables to be independent.



		 Example:





A semiconductor product consists of three layers. If the variances in thickness of the first, second, and third layers are 25, 40, and 30 nanometers squared, what is the variance of the thickness of the final product?



X = X1 + X2 + X3



So that 



V(X) = V(X1) + V(X2) + V(X3) = 25+40+30 = 95 nanometers squared.



S.D. = 9.75 nm







		 Mean and Variance of an Average:



		 Reproductive Property of the Normal Distribution:









		 Example:





Let the random variables X1 and X2 denote the length and width, respectively, of a manufactured part. Assume that X1 is normal with E(X1) = 2 centimeters and standard deviation 0.1 centimeter and that X2 is normal with E(X2) = 5 centimeters and standard deviation 0.2 centimeter. Also, assume that X1 and X2 are independent. Determine the probability that the perimeter exceeds 14.5 centimeters.



The Perimeter Y = 2X1 + 2X2

E(Y) = 2*2 + 2*5 = 14 cm



V(Y) = 4*0.12 + 4*0.22 = 0.2



so that







		 Question 5-64.





Assume that the weights of individuals are independent and normally distributed with mean of 160 pounds and a standard deviation of 30 pounds. Suppose that 25 people squeeze into an elevator that is designed to hold 43000 pounds.



A- what is the probability that the load (total weight) exceeds the design limit?















B- what design limit is exceeded by 25 occupants with probability 0.0001??
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200
ooy

_ -
=ox10 [(—0.002
)

s
0002~ 0.003 ]

. wy
2nm) B (, 003

0.05

]

:6x10"[




Given continuous random variables X and ¥ with joint probability density function
Jir(x,3), the conditional probability density function of ¥ given X = xi

o) = B f)>0





Because the conditional probability density function fy,(y) is a probability density
function for all y in R,, the following properties are satisfied:

o) fr(»)=0

@ [mo)w=1
R

() P(YeBlX=x)= ny‘,(y)dy for any set B in the range of ¥
B





0002y

6000150002 g, 60001
i) Jéx 107 dy = 6 X 107% (W

00020

= 6% 1076700 (W) = 0003 for x>0




0.001x-0.002
e

6% 10~
Fer(ep)h () xo,oo,e

=0.002"0%00 forg<x and x<y

Sral,





P(Y > 2000]x = 1500) = J’ Frpsoo(y) dy = J’ 0.002¢P 001500 ~0002 g,
2





Let R, denote the set o all points in the range of (X, ¥) for which X = . The cond
nal mean of ¥ given X = x, denoted as E(¥|x) or py s is

B = [0

and the conditional variance of ¥ given X = x, denoted as ¥/(¥|) or 03, is

nr|x) J 0= wr) fra () dy = J Plri0) dy = n
= &





E(Y]x = 1500) = J’ (0.002¢"0021500)=0002 gy, — 0,002 J’ 0002y gy
oo oo




Integrate by parts as follows:

§ o
o0 -
™
2

Iy
-0y
((—o.ooz)(—o.m)
-
* 0o 0002) ~ 0002

nno)

)

(2000)

With the constant 0.002¢* reapplied

E(Y]x = 1500) = 2000




For continuous random variables X and Y, if any one of the following properties is
true, the others are also true, and X and Y are said to be independent.

(1) frr(xy) = flx) f(y) forall xand y

(2) fr(y) = fr(y) forall xand y with fi(x) > 0

() fyip(x) = fx(x) forall xand y with fy{y) >0

(4) P(X € A,YE B) = P(X < A)P(Y € B) for any sets A and B in the range
of Xand Y, respectively.





Sor(xy)=2X 1076¢0001x=0002 for x = ) and y = 0.




- 6 -0001x-0002y
fe(x) J 2 X 107670000002 gy = 0,001 700 forx > 0
o




fry) = J 2 % 107670000 gy = 00027092 fory > 0
°




Cj YJtz(x + y)dvdx = j X+ "T dx
0 x 0

2
x

:J{[.\'(.‘(JrZ)Jr@a\'2 7‘7](%
0

= CJj (4x+2)x = [2.\'2 + 2.\(]; =24c

Therefore, ¢ = 1/24




a) P(X < 1. Y < 2) equals the integral of f;(x.y) over the following region.

Then,

P(X <1Y <





b) P(1 <X < 2) equals the integral of f;(x.y) over the following region.

Pl<X<2)= 714 J:AJ?(.\’ﬁ\ Yydy =

244

x




©) P(Y > 1) is the integral of fy (X.y) over the following region.

=1-0.02083=10.9792




d) P(X <2.Y <2) is the integral of fxy(xy) over the following region.

3342

E(X)= iJ‘ J x(x + y)dydx =

12 1[4x°
:Zi(u +20)dv = —




e)

342
1

24

E(X) :Z—ZJ [+ v)dyas :—jx?w%
0 x

1

24

1: o, 4
=—|(4x" +2x)r7.\‘:—{
24£





bl

1 3 42 (15\
3 x+2 5 2,2 »\/7
! dvds - = SJ
V(X),QJ;J‘Y(\M)\ ] ] J; L
2444 ¢
3 (15\'
:LJ( P +4Y——)dv 5
e * 31707
foad Pl (15) 31
1|3x"  4x Lo _ [7 0
:24{ 173 200 | 3




2) fy(x) is the integral of f, (x.y) over the interval from X to x+2. That is,

142

fr)=7 j(v+\)(h .

Ly 1+y
frr(L b v
) fy; () =2 ‘f’\d; == A forl<y<3.

See the following graph.

f " (y) defined over this line segment




DRI >2]X

. 3 — S (2) . . - " - e ar
k) fX\z (x) = % - Here f(y) is determined by integrating over x. There are
three regions of integration. For 0 < y <2 the integration is from 0 toy. For 2< y <3

the integration is from -2 toy. For 3 < y < 5 the integration is from y to 3. Because
the condition is y=2. only the first integration is needed.

£=3 J‘(Y+1)d‘(7 14{*;+,\;1-’0}:;; for 0<





£yp (%) defined over this line segment

L(x+2)

Therefore. f;-(2) =1/4 and fx‘z(v) = 24174

2
X2 foro<x<3
6




S b Y fir(xy) X, Ydiscrete
S NER I
J’J h(x,y) fir(x.y)dxdy X, Y continuous
R









Br

X 03+3x07





By=1X03+2X04+3x03=20




E[(X = (Y = )] = (1 = 24)(1 = 2.0) X 0.1
+ (1= 24)2 = 2.0) X 02 + (3 — 24)(1 — 2.0) X 02
+(3-24)2-20) X 02+ (3 - 24)3 - 20) X 03





.
[ \ / o 2wocomions

4 Al points ars of y
aqual probabilty

() Negative covariance (d) Zoro covariance




The covariance between the random variables X and ¥, denoted as cov(X, ¥) or oy, is

oy = E[(X = w)(¥ = wi)] = E(XY) — oy





The correlation between random variables X and ¥, denoted as pyys is

_ eov(tY)  on

P TIONT)  oxor





For any two random variables X and ¥

1= py =+l





“o1 s01

so1 e01

“04




EXY)=0X0X02+1X1X01+1X2X01+2X1X01
F2X2X01+3X3X04=45
0X02+1X02+2X02+3%04=18
(00— 18P X 02+ (1 — 1.8 X 02+ (2 — 1.8 x 0.2
+(3— 187 x 04 =136

E(
0%





oy = E(YY) — E(Y)E(Y) = 45 — (1.8)(1.8) = 1.26








1fX and Y are independent random variables,

oxr=pxr =10









E(XY)= M xfir(x. y)drdy :1—1‘5] [[ Ajvzrlr:|dy =%
0o olo

.
1
:R[ 2[8/3)dy :—ﬁ/s‘ 64/\]732/9
.





42 a2 +
E(X) = J J ey, y)dxdy 7% f [J ,\zrfr:|dy :%[
oo olo °

oo, ]*
— Ll
16[}/,_“

[ Vinte, vy = is

}[sm = 1n62) = 4

N

E(Y)

o

2 M
= g[f/x H =5l643] =85




E(XY) — EOE(Y) = 32/9 — (4/3)(8/3) = 0




3 3
S Vel +y)=36c,  e=1/36
i)

14 (1BBY -1
o = _(BY_
*"5 U6) 36

13 13 14
EXN=y EM=p E@N)=-

E(XZ):%6 E(YS:% 7(X) :V(Y):%





Given random variables X;, X, ..., X, and constants c;, ¢, ...

Y=cXi+ ok + + X,

X,

is a lincar combination of X, X, ..., X,.

3G





IfY = cXy + oXa + = + g X,

E(Y) = E(X)) + 0E(Xp) + - + ¢, E(X)





If Xj, X, ..., X, are random variables, and ¥ = ¢\ X] + 25 + -+ + ¢, Xp, then in
general

NY) = dVX) + V() + - + VX,) + 2>, > e cov(X;, X))
i<j
IfX, X, ... ,XP are independent,

NY) = V(X + V) + - + GH(X,)





IFX = (X; + X + - + X,)/p with EX) = p.fori = 1,2,

EX)=p

ifX;, X, ..., X, are also independent with V(X;) = o® fori = 1,2, .





If X, X,...., X, arc independent, normal random variables with E(X)

X)) = ol fori=1,2,....p,

Y=cX+ X+ + X,

is a normal random variable with
E(Y) = e + cama + - + Gy
and

NY) = o} + cJod + - + cfop

and





P(Y > 14.5) = P[(Y — pp/oy > (145 — 14/ 02 |
=PZ>112) =013




x—4000

22500

P(y >x)=0.0001 implies that P(Z > ) =0.0001.

Then 2520 =372 and x = 4558




X~N(160. 900)

Let Y =X;+Xo +... + Xos. E(Y)=25E(X) =4000. V(Y)=25%900) = 22500
P(Y > 4300) =

P( . 4300 — 4000

122500

J: P(Z>2)=1-P(Z <2)=1-09773 =0.0227






